Chemistry Mr. MacGillivray **Solution Stoichiometry Worksheet**

1. PROBLEM: What volume of 0.250 M phosphoric acid (H₃PO₄) is required to neutralize 35.2 ml of 0.338 M calcium hydroxide, Ca(OH)₂?

 $Ca(OH)_2 (aq) + \underline{\hspace{1cm}} H_3PO_4 (aq) \rightarrow \underline{\hspace{1cm}} Ca_3(PO_4)_2 (s) + \underline{\hspace{1cm}} HOH (l)$

Ca(OH) ₂		H ₃ PO ₄
	V	
	M	
	n	

- a. Balance the equation above.

 b. Fill in the blanks to set up your knowns and unknowns.
- c. Find the number of moles of calcium hydroxide. Use M=n/V. Show calculations. Units have to cancel, so use liters! Fill in the answer in the "mol" ("n") box under $Ca(OH)_2$.
- d. Convert from mol of calcium hydroxide to moles of phosphoric acid. Show your calculations. Fill in the answer above in the "mol" box under phosphoric acid.
- e. Use M=n/V to find the number of liters of H₃PO₄. Convert to ml and fill in the answer ⊚!
- 2. Repeat the above procedure for the following problem: How many ml of a 0.312 M solution of Pb(NO₃)₂ are needed to react completely with 75.0 ml of 0.500 M NaI?

$$\underline{\hspace{0.5cm}}$$
 Pb(NO₃)₂ + $\underline{\hspace{0.5cm}}$ NaI \rightarrow $\underline{\hspace{0.5cm}}$ PbI₂ + $\underline{\hspace{0.5cm}}$ NaNO₃

ANSWERS

Chemistry Mr. MacGillivray Solution Stoichiometry Worksheet

1. PROBLEM: What volume of 0.250 M phosphoric acid (H₃PO₄) is required to neutralize 35.2 ml of 0.338 M calcium hydroxide, Ca(OH)₂?

$$3 \text{ Ca(OH)}_2 \text{ (aq)} + 2 \text{ H}_3 \text{PO}_4 \text{ (aq)} \rightarrow \text{Ca}_3 (\text{PO}_4)_2 \text{ (s)} + 6 \text{ HOH (l)}$$

35.2 ml	V	31.7 ml
0.338 M	M	0.250 M
0.0119 moles	n	0.00793 moles

- a. Balance the equation above.
- b. Fill in the blanks to set up your knowns and unknowns.

c. Find the number of moles of calcium hydroxide. Use M=n/V. Show calculations. Units have to cancel, so use liters! Fill in the answer in the "mol" ("n") box under Ca(OH)₂.

$$M = \frac{n}{V}$$
 $n = (0.338 \frac{\text{moles}}{L})(0.0352 \text{ L}) = 0.0118976 \text{ moles Ca(OH)}_2$

d. Convert from mol of calcium hydroxide to moles of phosphoric acid. Show your calculations. Fill in the answer above in the "mol" box under phosphoric acid.

0.0119 moles
$$Ca(OH)_2$$
 X $\frac{2 \text{ moles } H_3PO_4}{3 \text{ moles } Ca(OH)2} = 0.00793 \text{ moles } H_3PO_4$

e. Use M=n/V to find the number of liters of H_3PO_4 . Convert to ml and fill in the answer 9!

$$M = \frac{n}{V} \qquad V = \frac{n}{M} \qquad V = \frac{0.00793 \text{ mol}}{0.250 \frac{\text{mol}}{L}} \qquad V = 0.0317 \text{ liters } V = 31.7 \text{ ml}$$

ANSWERS

2. Repeat the above procedure for the following problem: How many ml of a 0.312 M solution of Pb(NO₃)₂ are needed to react completely with 75.0 ml of 0.500 M NaI?

$$Pb(NO_3)_2 + 2 NaI \rightarrow PbI_2 + 2 NaNO_3$$

Pb(NO ₃) ₂		Nal
60.1 ml	V	75.0 ml
0.312 M	M	0.500 M
0.0188 moles	n	0.0375 moles

$$M = \frac{n}{V}$$
 $n = (0.500 \frac{\text{moles}}{L})(0.0750 \text{ L}) = 0.0375 \text{ moles NaI}$

0.0375 mol NaI X
$$\frac{1 \text{ mol Pb(NO}_3)_2}{2 \text{ mol NaI}} = 0.01875 \text{ mol Pb(NO}_3)_2$$

$$M=\frac{n}{V} \qquad V=\frac{n}{M} \qquad V=\frac{0.01875 \; mol}{0.312 \frac{mol}{L}} \label{eq:mol}$$

$$V=0.0601$$
 liters $V=60.1$ ml