Chemistry
 Mr. MacGillivray Solution Stoichiometry Worksheet

1. PROBLEM: What volume of 0.250 M phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ is required to neutralize 35.2 ml of 0.338 M calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$?
$ـ_{C} \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\ldots_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \ldots \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+\ldots \mathrm{HOH}^{(\mathrm{l})}$

$\mathrm{Ca}(\mathrm{OH})_{2}$		$\mathrm{H}_{3} \mathrm{PO}_{4}$
	\mathbf{V}	
	\mathbf{M}	
	\mathbf{n}	

a. Balance the equation above.
b. Fill in the blanks to set up your knowns and unknowns.
c. Find the number of moles of calcium hydroxide. Use $M=n / V$. Show calculations. Units have to cancel, so use liters! Fill in the answer in the "mol" (" n ") box under $\mathrm{Ca}(\mathrm{OH})_{2}$.
d. Convert from mol of calcium hydroxide to moles of phosphoric acid. Show your calculations. Fill in the answer above in the "mol" box under phosphoric acid.
e. Use $\mathrm{M}=\mathrm{n} / \mathrm{V}$ to find the number of liters of $\mathrm{H}_{3} \mathrm{PO}_{4}$. Convert to ml and fill in the answer © !
2. Repeat the above procedure for the following problem: How many ml of a 0.312 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ are needed to react completely with 75.0 ml of 0.500 M NaI ?

$$
\ldots \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \mathrm{NaI} \rightarrow \ldots \mathrm{PbI}_{2}+\ldots \mathrm{NaNO}_{3}
$$

ANSWERS

Chemistry
Mr. MacGillivray
Solution Stoichiometry Worksheet

1. PROBLEM: What volume of 0.250 M phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ is required to neutralize 35.2 ml of 0.338 M calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$?
$3 \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{HOH}(\mathrm{l})$

35.2 ml	V	31.7 ml
0.338 M	M	0.250 M
0.0119 moles	n	0.00793 moles

a. Balance the equation above.
b. Fill in the blanks to set up your knowns and unknowns.
c. Find the number of moles of calcium hydroxide. Use $M=n / V$. Show calculations. Units have to cancel, so use liters! Fill in the answer in the "mol" ("n") box under $\mathrm{Ca}(\mathrm{OH})_{2}$.

$$
\mathrm{M}=\frac{\mathrm{n}}{\mathrm{~V}} \quad \mathrm{n}=\left(0.338 \frac{\text { moles }}{\mathrm{L}}\right)(0.0352 \mathrm{~L})=0.0118976 \text { moles } \mathrm{Ca}(\mathrm{OH})_{2}
$$

d. Convert from mol of calcium hydroxide to moles of phosphoric acid. Show your calculations. Fill in the answer above in the "mol" box under phosphoric acid.
0.0119 moles $\mathrm{Ca}(\mathrm{OH})_{2} \times \quad \frac{2 \text { moles } \mathrm{H}_{3} \mathrm{PO}_{4}}{3 \text { moles } \mathrm{Ca}(\mathrm{OH})_{2}}=0.00793$ moles $\mathrm{H}_{3} \mathrm{PO}_{4}$
e. Use $\mathrm{M}=\mathrm{n} / \mathrm{V}$ to find the number of liters of $\mathrm{H}_{3} \mathrm{PO}_{4}$. Convert to ml and fill in the answer © !

$$
\mathrm{M}=\frac{\mathrm{n}}{\mathrm{~V}} \quad \mathrm{~V}=\frac{\mathrm{n}}{\mathrm{M}} \quad \mathrm{~V}=\frac{0.00793 \mathrm{~mol}}{0.250 \frac{\mathrm{~mol}}{\mathrm{~L}}} \quad \mathrm{~V}=0.0317 \text { liters } \mathrm{V}=31.7 \mathrm{ml}
$$

ANSWERS

2. Repeat the above procedure for the following problem: How many ml of a 0.312 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ are needed to react completely with 75.0 ml of 0.500 M NaI ?

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NaI} \rightarrow \mathrm{PbI}_{2}+2 \mathrm{NaNO}_{3}
$$

$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$		NaI
60.1 ml	V	75.0 ml
0.312 M	M	0.500 M
0.0188 moles	n	0.0375 moles

$$
\begin{aligned}
\mathrm{M}= & \frac{\mathrm{n}}{\mathrm{~V}} \quad \mathrm{n}=\left(0.500 \frac{\mathrm{moles}}{\mathrm{~L}}\right)(0.0750 \mathrm{~L})=0.0375 \mathrm{moles} \mathrm{NaI} \\
& 0.0375 \mathrm{~mol} \mathrm{NaI} \mathrm{X} \frac{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}{2 \mathrm{~mol} \mathrm{NaI}}=0.01875 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \\
\mathrm{M}= & \frac{\mathrm{n}}{\mathrm{~V}} \quad \mathrm{~V}=\frac{\mathrm{n}}{\mathrm{M}} \quad \mathrm{~V}=\frac{0.01875 \mathrm{~mol}}{0.312 \frac{\mathrm{~mol}}{\mathrm{~L}}} \\
\mathrm{~V}= & 0.0601 \text { liters } \quad \mathrm{V}=60.1 \mathrm{ml}
\end{aligned}
$$

